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Abstract

This paper presents a method to determine the four through-thickness sti�nesses of thick laminated composites.

Only one specimen submitted to one test is required. The procedure is based on a suitable use of the principle of
virtual work with four independent virtual ®elds. This leads to a system of four linear equations where the through-
thickness sti�nesses are the unknowns. The system is ®nally inverted to determine the sti�nesses. Finite element
simulations have been carried out to validate the approach and to show its stability. 7 2000 Elsevier Science Ltd.

All rights reserved.
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1. Introduction

Structural composite components in the aerospace industry are usually composed of thin plates or
shells for which the knowledge of the in-plane ply moduli and strengths are enough to design the
structure. However, the extension of composite applications in other industrial sectors such as the naval
or ground transportation ®elds requires the use of less costly materials such as glass reinforced
polymers, for which increased thicknesses are usually necessary to ful®l the structural function. As a
consequence, the plane stress and plane strain assumption of the classical lamination theory does not
hold any more and full three-dimensional (3-D) stress and strain states must be taken into account for
the design. It is, therefore, necessary for the designer to know not only the in-plane but also the
through-thickness ply moduli and strengths.
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Because of the relatively new development of such structures, the measurement of through-thickness
properties has seldom been addressed by researchers on composites. A number of mechanical tests are
however available, ranging from direct tensile test on a through-thickness waisted or non-waisted
specimen (Broughton and Sims, 1994; Mespoulet, 1998) to through-thickness shear using the Iosipescu
(Gipple and Hoyns, 1994) and/or the torsion test on rectangular rods and tension and/or bending on a
curved specimen (Broughton and Sims, 1994; Hiel et al., 1991; ASTM, 1998). Nevertheless, these methods
are not reliable mainly because of the di�culty to achieve homogeneous stress states in the specimens.

Alternative methods based on mixed experimental/numerical approaches have been proposed in the
literature to measure elastic properties of composite plates (Sol, 1986; De Wilde, 1991; Hendriks, 1991;
Pedersen and Frederiksen, 1992; Araujo et al., 1996; Frederiksen (1997, 1998); Rikards and Chate, 1998;
Cunha and Piranda, 1999). The response of the tested specimen is modelled with a ®nite element
programme or another approximation method like the Ritz method and the unknown parameters are
adjusted stepwise, in such a way that both sets of measured and computed values of the displacements,
strains or natural frequencies match as precisely as possible. These methods were ®rst developed for
measuring in-plane properties but some of them allow the determination of the through-thickness shear
moduli (see Frederiksen, 1998 for instance) with a good accuracy. However, the transverse tensile
moduli and Poisson's ratio are not determined with such methods. Moreover, a relevant initial guess for
the values of the unknowns must be supplied to insure the convergence of the numerical procedure.

The aim of this paper is to describe an alternative method allowing the determination of the through-
thickness sti�nesses from a testing con®guration giving rise to heterogeneous stress ®elds inside the
specimen. This method clearly departs from the above ones for the following reasons:

. four through-thickness elastic parameters are determined (not only the through-thickness shear
modulus);

. no assumption is made concerning the through-thickness kinematic ®eld, contrary to the dynamical
methods where the displacement ®eld is assumed to verify some theories like the higher-order shear
deformation theory by Reddy (Frederiksen, 1998);

. the unknown parameters are determined directly, without any iterative calculations;

. a ring specimen is considered instead of a thick plate. The idea here is to measure elastic parameters
of thick tubes that are very important for o�shore applications (Pierron and Davies, 1998). Usual
standard methods such as the Iosipescu test or the direct tension test cannot be used to characterize
them. The ring is subjected to diametral compression. This testing con®guration can be easily setup in
practice using a universal tension/compression testing machine;

. the whole through-thickness kinematic ®eld is assumed to be measured with a suitable optical
technique. In the present work, however, the method itself is described and simulated with a ®nite
element programme that provides the displacement and strain components at the nodes of the mesh.
In practice, such kinematic ®elds would be obtained with a method derived from the grid method
already used for characterizing in-plane properties of composite plates (GreÂ diac et al., 1999).

The theoretical aspects of the procedure are described in the ®rst part of the paper. Some results of
®nite element simulations are then given for a speci®c specimen geometry. The stability of the procedure
is ®nally examined.

2. Theory

2.1. Introduction

The method used here is based on a relevant use of the principle of virtual work. It was ®rst
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introduced by GreÂ diac (1989) for anisotropic plate bending problems, both in statics (GreÂ diac, 1996)
and in dynamics (GreÂ diac et al., 1998a) and for in-plane problems (GreÂ diac and Pierron, 1998). The
whole strain ®eld is required for such a method. It can be obtained in practice with an optical method
(GreÂ diac et al., 1999), but this point is not developed here. In the above references, only the in-plane or
bending elastic properties of thin composite plates were measured. The objective here is di�erent since
the determination of through-thickness properties of thick composite tubes is addressed.

The basic idea is to apply the principle of virtual work to the tested specimen with some explicit and
independent virtual displacement ®elds. Each new virtual ®eld provides a new linear equation where the
sti�nesses are unknown. This leads to a linear system which has to be inverted. This method is very
general but two main di�culties arise in practice. First, one has to de®ne a specimen geometry where
the in¯uences of each unknown are approximately balanced to ensure its `identi®ability'. Second, a set
of admissible virtual ®elds leading to a well-conditioned system must be found. This will be solved in the
following sections in the case of the determination of the through-thickness sti�nesses.

2.2. Principle of virtual work with speci®c virtual ®elds

An orthotropic medium characterised by four independent sti�nesses is considered. Because of the
shape of the specimen studied below, polar coordinates are used. In this coordinate system and
assuming a linear elastic behaviour, the independent sti�nesses to be identi®ed relate the in-plane stress
to the strain components as follows0@sy

sr
ss

1A �
0@Qyy Qyr 0
Qyr Qrr 0
0 0 Qss

1A0@ ey
er
es

1A �1�

where si and ei, with i, j=y, r, s are the components, of the stress and strain tensors, respectively (the
classical contraction from 2 to 1 for the stress and strain indices is used), the Qij's are the sti�nesses to
be determined.

The present identi®cation method is based on the principle of virtual work which can be written in
the following form

ÿ
�
V

sije�ij dV�
�
@V

Tiu
�
i dS � 0 �2�

where the convention of repeated indices for summation is adopted, V is the volume of the specimen
considered, @V its boundary, s the stress tensor, e� the virtual strain tensor, T the surface load density
and u� the virtual displacement ®eld associated to e�. The ®rst term is the internal virtual work and the
second one is the external virtual work. Considering now that the problem is an in-plane one and that
the specimen is subjected to a force applied at a point M, Eq. (2) becomes�

S

sye�y dS�
�
S

sre�r dS�
�
S

sse�s dS � Fu��M �
e

�3�

where e is the thickness of the specimen, S its surface, u�(M ) the virtual displacement along the
direction of the loading and F the magnitude of the load.

Introducing new Eq. (1) in Eq. (3) and assuming that the material properties are homogeneous over
the specimen
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Qyy

�
S

eye�y dS�Qrr

�
S

ere�r dS�Qyr

�
S

�ere�y � eye�r �dS�Qss

�
S

ese�s dS � Fu��M �
e

�4�

As may be seen, a linear equation involving the four unknown sti�nesses is obtained. The objective is
now to de®ne the shape of the specimen and at least four independent virtual ®elds to build up a linear
system where the sti�nesses are unknown.

2.3. Shape of the tested specimen

The choice of the specimen shape as well as of the loading conditions is somewhat arbitrary, but it
must follow some obvious rules. For instance, the specimen must be easily manufactured and the
magnitude of the three in-plane stress components inside the loaded specimen must be approximately
balanced to ensure the `identi®ability' of the sti�nesses.

The geometry studied here is a thick ring obtained for instance from a thick composite tube (see
Fig. 1). It is subjected to a unique radial force. The ®rst point is to check that these loading conditions
are relevant, i.e. that the magnitude of the three stress components are roughly the same. Hence, a ®nite
element calculation has been carried out with the following material properties (glass ®bre UD hoop
wound ring):

Eyy � 40 GPa, Err � 10 GPa

Gyr � 4 GPa, nyr � 0:3 �5�
These quantities are directly related to the unknown sti�nesses by the following formulae

Eyy � Qyy

 
1ÿ Q 2

yr

QrrQyy

!
, Err � Qrr

 
1ÿ Q2

yr

QrrQyy

!
, nyr � Qyr

Qrr
, Gyr � Qss �6�

The model has been developed with the ANSYS 5.3 package. The following dimensions of this specimen
have been used (see Fig. 2):

R1 � 87:5 mm, R0 � 37:5 mm, R � 62:5 mm

h � 50 mm, e � 50 mm �7�

Fig. 1. Ring specimen cut in a thick composite tube.
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Because of the symmetry of the problem, only one quarter of the ring has been considered and meshed
with 1500 bilinear elements (plane 42): 30 along the width and 50 along the quarter of the circle. It has
been checked with a convergence study that the results provided by the programme are satisfactory. The
three in-plane stress contours are plotted in Figs. 3±5. As can be seen, the range of the three stress
components are of roughly equal magnitudes, which con®rms the potential `identi®ability' of the four
sti�ness components.

2.4. Virtual ®elds used for the identi®cation procedure

2.4.1. Introduction
The problem is now to de®ne four di�erent virtual ®elds leading to four independent linear equations.

Note that more than four ®elds could be used to obtain a redundant system, but this approach has not
been retained in the present work. The virtual ®elds have only to be continuous and kinematically
admissible. Hence, a wide range of choices is available for these ®elds, which will be de®ned following
the general rules listed below:

1. the four ®elds must be independent to ensure the independence of the equations;
2. previous investigations carried out with a similar approach have shown that the literal expression of

the ®elds must be as simple as possible to ensure the stability and the accuracy of the procedure;
3. to improve the independence of the equations, the ®elds must lead to partially uncoupled equations,

i.e. only some of the unknowns must appear in the equations if possible. Ideally, the best choice
should lead to an internal work in which only one sti�ness is involved, but this is not always possible
to achieve;

Fig. 2. Ring specimen.
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4. depending on the specimen geometry, either the whole surface of the specimen or only one particular
part can be virtually deformed. In both cases however, the area where the virtual strain components
are maximum must match as much as possible, the area where the actual stress components are
maximum to reduce the in¯uence of measurement errors on the actual strain on the internal virtual
work.

There is no general rule providing automatically, the virtual ®elds for a given identi®cation problem
since this choice strongly depends on the shape of the specimen, on the loading and therefore, on the
stress ®eld itself inside the specimen which remains analytically unknown. As will be shown in the
following section, the procedure for ®nding a set of initial ®elds leading to independent equations is
mainly based on common sense and it is clear that this choice is not unique. This choice can be
considered as satisfactory only a posteriori with numerical simulations. Note ®nally, that the virtual
®elds can be considered as ®lters which emphasize the contribution to the internal virtual work of some

Fig. 3. Stress contour in the ring specimen: sr.
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unknowns or of some parts of the specimen. This feature is used to de®ne the testing con®gurations and
to choose the virtual ®elds in the present problem.

2.4.2. Virtual ®elds
The four ®elds de®ned for this specimen shape are shown in Figs. 6±9. The choice of these ®elds is

more or less intuitive and somewhat arbitrary, but it is checked that they follow the above rules as
much as possible and that they lead in practice to the unknown sti�nesses. Each of the following ®elds
is of the form

~u
� � u�r ~er � u�y~ey � K~ey �8�

where u �r , u �y are the virtual displacements in the natural polar coordinate system (O, r, y ) of the
specimen (see Fig. 2), ~er, ~ey and ~ey are normalized vectors along the r-, y- and y-axes, respectively. K~ey is
a constant global displacement that is adjusted in such a way that point A located at the bottom of the
ring does not move. Hence, the virtual displacement ®eld is admissible. Note that this constant term has
no in¯uence on the virtual strain ®eld as it vanishes after di�erentiation.

Fig. 4. Stress contour in the ring specimen: sy.
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2.4.2.1. Field 1: virtual hydrostatical compression. The ®rst ®eld (see Fig. 6) can be considered as a virtual
hydrostatical compression. It is de®ned by

u�r � ÿkr, u�y � 0, K � ÿkR1 �9�

where k is any non-zero real numbers. The virtual strain components are obtained by di�erentiation of
the virtual displacement ®eld using the following relationships in a given polar coordinate system

er � @ur
@r

, ey � 1

r

@uy
@y
� ur

r
, es � @uy

@r
� 1

r

@ur
@y
ÿ uy

r
�10�

In the present case, the virtual strain components are

e�r � e�y � ÿk, e�s � 0 �11�

Fig. 5. Stress contour in the ring specimen: ss.
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The virtual displacement of point M is

~u
��M � � ÿ2kR1~ey �12�

Finally, Eq. (4) becomes

Qyy

� 2p

0

�R1

R0

eyr dr dy�Qrr

� 2p

0

�R1

R0

err dr dy�Qyr

� 2p

0

�R1

R0

�er � ey�r dr dy � ÿ2FR1

e
�13�

As may be seen, only three among the four unknown sti�nesses are involved: Qrr, Qyy and Qyr.

2.4.2.2. Field 2: virtual bending. The second ®eld describes a virtual bending of the circle (see Fig. 7). It
is built under the Euler±Bernoulli's assumption to eliminate the contribution of Qrr and Qss. Virtual dis-
placements can be expressed as follows in the natural polar coordinate system

u�r � kR cos 2y, u�y � 2k�rÿ R� sin 2y, K � ÿkR �14�

Fig. 6. Virtual hydrostatical compression of the ring specimen. Dashed line: undeformed specimen. R1=87.5 mm, R0=37.5 mm, k

=0.2.
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The only non-zero virtual strain component corresponding to the above virtual displacement ®eld is

e�y �
4k

r

�
rÿ 3

4
R

�
cos 2y �15�

The corresponding virtual displacement of point M is

~u
��M � � ÿ2kR~ey �16�

In this case, Eq. (5) becomes

Qyy

� 2p

0

�R1

R0

ey

�
rÿ 3

4
R

�
cos 2y dr dy�Qyr

� 2p

0

�R1

R0

er

�
rÿ 3

4
R

�
cos 2y dr dy � F

R

2e
�17�

Only two sti�nesses are involved here: Qyy and Qyr.

Fig. 7. Virtual bending of the ring specimen. Dashed line: undeformed specimen. R1=87.5 mm, R0=37.5 mm, k=0.2.
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2.4.2.3. Field 3: virtual shear. The third ®eld (see Fig. 8) is such that only the shear strain is non-zero, so
that only the shear modulus is involved in the internal virtual work. In the natural coordinate system,
the virtual displacement ®eld is

u�r � kR cos 2y, u�y � ÿ
k

2
R sin 2y, K � ÿkR �18�

The corresponding virtual shear strain ®eld is

e�s � ÿk
3R

2r
sin 2y �19�

The virtual displacement of point M is

~u
��M � � ÿ2kR~ey �20�

Eq. (5) reduces to

Fig. 8. Virtual shear of the ring specimen. Dashed line: undeformed specimen. R1=87.5 mm, R0=37.5 mm, k=0.2.
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Qss

� 2p

0

�R1

R0

es sin 2y dr dy � ÿ 4

3e
F �21�

This equation is completely uncoupled, as only the shear sti�ness is involved.

2.4.2.4. Field 4: virtual swelling. The fourth ®eld describes a swelling of the circle (see Fig. 9). In the
natural polar coordinate system, the virtual displacement ®eld is

u�r � k�rÿ R� cos 2y, u�y � 0, K � ÿkh
2

�22�

It leads to three non-zero virtual strain components

e�r � k cos 2y, e�y � k

�
1ÿ R

r

�
cos 2y, e�s � ÿ2k

�
1ÿ R

r

�
sin 2y �23�

The virtual displacement of point M is the same as in the previous cases

~u
��M � � ÿkh~ey �24�

Fig. 9. Virtual swelling of the ring specimen. Dashed line: undeformed specimen. R1=87.5 mm, R0=37.5 mm, k=0.2.
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As a result, the four unknowns are related to the load applied to the circle

Qyy

� 2p

0

�R1

R0

ey�rÿ R� cos 2y dr dy�Qrr

� 2p

0

�R1

R0

err cos 2y dr dy�Qyr

"� 2p

0

�R1

R0

er�rÿ R� cos 2y dr dy

�
� 2p

0

�R1

R0

eyr cos 2y dr dy

#
ÿ 2Qss

� 2p

0

�R1

R0

es�rÿ R� sin 2y dr dy � F
h

e

�25�

2.4.2.5. Conclusion. It has been shown that the application of the principle of virtual work with four
independent virtual ®elds leads to a system of four partially uncoupled linear equations where the sti�-
nesses are unknown. This system can be written as follows

Aq � b �26�

where q is the unknown vector

q: fQyy, Qrr, Qyr, QssgT �27�

A is the 4� 4 matrix of the linear system:

A:

0BB@
A11 A12 A13 0
A21 0 A23 0
0 0 0 A34

A41 A42 A43 A44

1CCA �28�

with

A11 �
� 2p

0

�R1

R0

eyr dr dy, A12

� 2p

0

�R1

R0

err dr dy, A13 �
� 2p

0

�R1

R0

�er � ey�r dr dy

A21 �
� 2p

0

�R1

R0

ey

�
rÿ 3

4
R

�
cos 2y dr dy, A23 �

� 2p

0

�R1

R0

er

�
rÿ 3

4
R

�
cos 2y dr dy

A34 �
� 2p

0

�R1

R0

es sin 2y dr dy

A41 �
� 2p

0

�R1

R0

ey�rÿ R� cos 2y dr dy, A42 �
� 2p

0

�R1

R0

err cos 2y dr dy

A43 �
� 2p

0

�R1

R0

�er�rÿ R� � eyr� cos 2y dr dy, A44 � ÿ2
� 2p

0

�R1

R0

es�rÿ R� sin 2yr dr dy �29�

and b is the right-hand-side vector:
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b: F�
�
ÿ 2R1

e
,
R

2e
, ÿ 4

3e
,
h

e

�T

�30�

As may be seen, two equations are partially uncoupled and one is completely uncoupled. This result il-
lustrates the above rule (3).

2.4.3. Conclusion

A system of four linear equations has been built up. The purpose of the next section is to validate the
present approach using some ®nite element simulations. Strain ®elds provided by the ®nite element
model of the specimen are considered as input data to compute the integrals in matrix A. Sti�ness
components are ®nally back-identi®ed and compared to the input values of the ®nite element model to
assess the accuracy and the stability of the procedure.

3. Numerical simulations

3.1. Identi®cation

The output data of the ®nite element calculation described in Section 2.3 in terms of strains at the
centroid of each element are considered as input data for the identi®cation programme.

The integrals of the strain components in matrix A are transformed into sums. For instance, the
following integral becomes� 2p

0

�R1

R0

er�rÿ R� cos 2y dr dy �
 XNy

m�1

XNr

n�1
emn
r �rmn ÿ R� cos 2ymn

!
DrDy

�
XNy

m�1

XNr

n�1
�Ymn

1 emn
r Rmn

2 �
2hp
NrNy

�31�

where Nr, Ny are the number of elements along the width and the circle, respectively. Applying this
approximation to the remaining integrals, matrix A can be written as follows0BBBBBBBBBBBBBBBBB@

XNy

m�1

XNr

n�1
emn
y rmn

XNy

m�1

XNr

n�1
emn
r rmn

XNy

m�1

XNr

n�1
�emn

r � emn
y �rmn 0

XNy

m�1

XNr

n�1
Ymn

1 emn
y Rmn

1 0
XNy

m�1

XNr

n�1
Ymn

1 emn
r Rmn

1 0

0 0 0
XNy

m�1

XNr

n�1
Ymn

2 emn
s

XNy

m�1

XNr

n�1
Ymn

1 emn
y Rmn

2

XNy

m�1

XNr

n�1
Ymn

1 emn
r rmn

XNy

m�1

XNr

n�1
Ymn

1 �emn
r Rmn

2 � emn
y rmn� ÿ2

XNy

m�1

XNr

n�1
Ymn

2 emn
s Rmn

2

1CCCCCCCCCCCCCCCCCA
�32�

with
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Ymn
1 � cos 2ymn, Ymn

2 � sin 2ymn �33�

Rmn
1 � rmn ÿ 3

4R, Rmn
2 � rmn ÿ R �34�

and emn
r , emn

y , emn
s are the same values of the three strain components over each element.

The right-hand-side vector is ®nally written as

b: F
NrNy

2peh

�
ÿ 2R1,

1

2
R, ÿ 4

3
, h

�T

�35�

The linear system is solved in order to identify the sti�ness components Qyy, Qrr, Qyr and Qss. Eyy, Err,
Gyr and nyr are the obtained with Eq. (6). The magnitude of the applied loading F is 200,000 N. The
results are reported in Table 1. As can be seen, the identi®ed values agree within less than 1% to the
reference values. This result validates the procedure from a theoretical point of view.

3.2. Stability

As the present identi®cation method will be used in experimental applications, it is important to check
its stability as the strain components cannot be exactly collected in practice. Therefore, experimental
errors have been numerically simulated by adding noise to the strain components. This noise is modelled
with a truncated normal distribution of errors supposed to simulate experimental errors. Two
magnitudes have been chosen, 5 and 10% of the maximum strain component for each of three strain
components. The standard deviation of the error distribution is also computed. These perturbated data
considered as input data for the identi®cation programme and the corresponding identi®ed sti�nesses
are collected. The process is repeated 50 times to obtain a distribution of perturbated identi®ed
sti�nesses. To check the stability, the amplitude and mean of these identi®ed distributions have been
compared to the original input sti�nesses and to the perturbation amplitude. The calculations have been
performed for both amplitudes of errors. The coe�cient of variation, which is de®ned by the ratio
between the standard deviation and the mean, is also computed in each case. This quantity is directly
related to the scatter of the distribution. The results are reported in Tables 2 and 3. It can be seen that

Table 1

Actual and identi®ed values of the sti�ness components

Eyy GPa Err GPa Gyr GPa nyr

Actual value 40.00 10.00 4.00 0.30

Identi®ed value 40.16 9.97 4.00 0.297

Relative di�erence % 0.4 ÿ0.3 0.0 ÿ1.0

Table 2

Identi®ed sti�nesses distributions from 5% perturbated strains

Eyy GPa Err GPa Gyr GPa nyr

Actual values 40.00 10.00 4.00 0.30

Perturbated values 40.36 9.88 4.00 0.29

Di�erence (%) 0.9 ÿ1.2 0.0 ÿ2.7
Coe�cient of variation (%) 4.8 5.2 0.3 20.3
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the di�erence between the mean value of the identi®ed moduli computed from the perturbated strain
components and the actual corresponding quantities is lower than 1.7%. Poisson's ratio is obtained with
a relative di�erence of 10% in the second case. This last result is in agreement with the conclusions of
previous studies carried out on other specimen shapes and loading conditions, in which it was shown
that the lowest accuracy is obtained with Poisson's ratio because of its small in¯uence on the strain and
stress ®elds. It must be emphasized that the coe�cients of variation remain reasonably low for Qyy, Qrr,
and Qss even for the 10% perturbation. This is due to the fact that the integrals can be interpreted as
weighted means of the strain components that average out local variations.

4. Conclusion

An identi®cation method has been proposed for determining the through-thickness sti�nesses of thick
laminated composites. These properties are di�cult to measure with standard methods and such
alternative approaches can, therefore, be considered advantageously.

The main features of the present method are:

. heterogeneous stress and strain ®elds are considered and processed;

. no assumption is made concerning the displacement ®eld;

. the whole strain ®eld is considered as input data of the identi®cation procedure;

. only one test is required to determine the four independent parameters;

. the method itself is based on a relevant use of the principle of virtual work with four independent
®elds;

. the method is direct and neither ®nite element model nor iterative calculations are required;

. the accuracy and the stability of the procedure have been studied and the results can be considered
compatible with a practical application.

One could think that the main di�culty lies in the whole strain ®eld measurement that is performed in
practice with a suitable optical method. However, such setups now become more popular, reliable and
inexpensive. Previous similar studies on other specimen shapes and loading conditions for measuring in-
plane and bending sti�nesses of thin composite have been successfully carried out with de¯ectometry
setups or grid techniques (GreÂ diac, 1998b, 1999). As a result, one can expect to actually measure the
through-thickness moduli of thick rings with the present approach.
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